How do I find the integral #intt^2/(t+4)dt# ?
1 Answer
Sep 30, 2014
#=t^2/2-4t-24+16ln(t+4)+c# , where#c# is a constantExplanation :
#=intt^2/(t+4)dt# let's
#t+4=u# , then#dt=du#
#=int(u-4)^2/udu#
#=int(u^2-8u+16)/udu#
#=int(u^2/u-8u/u+16/u)du#
#=int(u-8+16/u)du#
#=intudu-int8du+int16/udu#
#=u^2/2-8u+16lnu+c# , where#c# is a constantSubstituting
#u# back yields,
#=(t+4)^2/2-8(t+4)+16ln(t+4)+c# , where#c# is a constantSimplifying further,
#=t^2/2+8+4t-8t-32+16ln(t+4)+c# , where#c# is a constant
#=t^2/2-4t-24+16ln(t+4)+c# , where#c# is a constant