How do I use the quadratic formula to solve #3x^2 - 6 = 4x#?
1 Answer
Explanation:
Given:
#3x^2-6 = 4x#
Subtract
#3x^2-4x-6 = 0#
This is now in standard form:
#ax^2+bx+c = 0#
with
So we can apply the quadratic formula to find:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(x) = (-(color(blue)(-4))+-sqrt((color(blue)(-4))^2-4(color(blue)(3))(color(blue)(-6))))/(2(color(blue)(3)))#
#color(white)(x) = (4+-sqrt(16+72))/6#
#color(white)(x) = (4+-sqrt(88))/6#
#color(white)(x) = (4+-sqrt(2^2 * 22))/6#
#color(white)(x) = (4+-2sqrt(22))/6#
#color(white)(x) = (2+-sqrt(22))/3#
#color(white)(x) = 2/3+-sqrt(22)/3#
Bonus
Notice in the derivation above that we had a factor
This always happens when
In such cases we can instead think of the original quadratic as taking the form:
#ax^2+2dx+c = 0#
Then the solutions can be expressed as:
#x = (-d+-sqrt(d^2-ac))/a#
In our example
#x = (-(color(blue)(-2))+-sqrt((color(blue)(-2))^2-(color(blue)(3))(color(blue)(-6))))/(color(blue)(3))#
#color(white)(x) = (2+-sqrt(4+18))/3#
#color(white)(x) = (2+-sqrt(22))/3#
#color(white)(x) = 2/3+-sqrt(22)/3#
I don't know how widely this variant of the quadratic formula is used.
If
#x^2+2dx+c = 0#
are:
#x = -d+-sqrt(d^2-4c)#