How do solve 3e^x=2e-x+43ex=2ex+4?

1 Answer
Nov 8, 2015

If you mean 3e^x=2e^(-x)+43ex=2ex+4, then rearrange as a quadratic in e^xex, solve and take logs to find:

x = ln((2+sqrt(10))/3)x=ln(2+103)

Explanation:

Assuming you meant 3e^x=2e^(-x)+43ex=2ex+4, first multiply by e^xex to get:

3(e^x)^2 = 2+4(e^x)3(ex)2=2+4(ex)

Subtract the right hand side from the left to get:

3(e^x)^2-4(e^x)-2 = 03(ex)24(ex)2=0

Using the quadratic formula, we get:

e^x = (4+-sqrt(4^2-(4xx3xx-2)))/(2*3) =(4+-sqrt(16+24))/6ex=4±42(4×3×2)23=4±16+246

=(4+=sqrt(40))/6 = (4+-2sqrt(10))/6 = (2+-sqrt(10))/3=4+=406=4±2106=2±103

Now sqrt(10) > 210>2, so to get a positive value for e^xex (and hence a Real value for xx) we need to choose the ++ sign here to find:

e^x = (2+sqrt(10))/3ex=2+103

and hence:

x = ln((2+sqrt(10))/3)x=ln(2+103)