How do solve 3e^x=2e-x+43ex=2e−x+4?
1 Answer
Nov 8, 2015
If you mean
x = ln((2+sqrt(10))/3)x=ln(2+√103)
Explanation:
Assuming you meant
3(e^x)^2 = 2+4(e^x)3(ex)2=2+4(ex)
Subtract the right hand side from the left to get:
3(e^x)^2-4(e^x)-2 = 03(ex)2−4(ex)−2=0
Using the quadratic formula, we get:
e^x = (4+-sqrt(4^2-(4xx3xx-2)))/(2*3) =(4+-sqrt(16+24))/6ex=4±√42−(4×3×−2)2⋅3=4±√16+246
=(4+=sqrt(40))/6 = (4+-2sqrt(10))/6 = (2+-sqrt(10))/3=4+=√406=4±2√106=2±√103
Now
e^x = (2+sqrt(10))/3ex=2+√103
and hence:
x = ln((2+sqrt(10))/3)x=ln(2+√103)