How do you combine #(4a)/(a^2-ab-2b^2) -( 6b)/(a^2+4ab+3b)#?

1 Answer
Mar 15, 2016

#(4a)/(a^2-ab-2b^2)-(6b)/(a^2+4ab+color(red)(3b^2))#

#=(2(2a^2+3ab+6b^2))/(a^3+2a^2b-5ab^2-6b^3)#

Explanation:

This problem makes more sense if the expression is:

#(4a)/(a^2-ab-2b^2)-(6b)/(a^2+4ab+color(red)(3b^2))#

#=(4a)/((a+b)(a-2b))-(6b)/((a+b)(a+3b))#

#=((4a)(a+3b)-(6b)(a-2b))/((a+b)(a-2b)(a+3b))#

#=(4a^2+12ab-6ab+12b^2)/((a+b)(a-2b)(a+3b))#

#=(2(2a^2+3ab+6b^2))/((a+b)(a-2b)(a+3b))#

#=(2(2a^2+3ab+6b^2))/((a^2-ab-2b^2)(a+3b))#

#=(2(2a^2+3ab+6b^2))/(a^3+2a^2b-5ab^2-6b^3)#

Note that I did not try to factor #(2a^2+3ab+6b^2)# since it has a negative discriminant #Delta = 3^2-(4*2*6) = 9-48 = -39#, so no linear factors with Real coefficients.