How do you combine (x-1)*[3/(x^2-1)+x/(2x-2)]?

1 Answer
Aug 22, 2017

=(x^2+x+6)/(2(x+1))

Explanation:

(x-1)*[3/(x^2-1)+x/(2x-2)]

Factorise the denominators first

= (x-1)*[3/((x+1)(x-1))+x/(2(x-1))]

Add the fractions using a common denominator.

=(x-1)*[((2xx3 + x(x+1))/(2(x+1)(x-1))]

=(x-1)*[(6 + x^2+x)/(2(x+1)(x-1))]

Distribute (x-1) into the bracket:

=[(cancel((x-1))(6 + x^2+x))/(2(x+1)cancel((x-1))]

=(x^2+x+6)/(2(x+1))