How do you combine #(x+2)/(5x^2)+(x+4)/(15x)#?

1 Answer
Jul 17, 2016

#[x^2 + 7x+ 6]/(15x^2)#

Explanation:

Adding fractions requires a common denominator.

The LCD is #15x^2#

An equivalent fraction for each fraction must be found with the denominator #15x^2#

#color(magenta)[(x+2)/(5x^2])+color(blue)[(x+4)/(15x)]#

#color(magenta)[(x+2)/(5x^2) xx 3/3 = (3(x+2))/(15x^2])#

#color(blue)[(x+4)/(15x) xx x/x = (x(x+4))/(15x^2)]#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(magenta)[(x+2)/(5x^2])+color(blue)[(x+4)/(15x)]#

=#color(magenta)[(3(x+2))/(15x^2)] + color(blue)[(x(x+4))/(15x^2) ]#

= #[color(magenta)(3x+6) + color(blue)(x^2+4x])/(15x^2)#

= #[x^2 + 7x+ 6]/(15x^2)#