How do you combine (x+2)/(5x^2)+(x+4)/(15x)x+25x2+x+415x?

1 Answer
Jul 17, 2016

[x^2 + 7x+ 6]/(15x^2)x2+7x+615x2

Explanation:

Adding fractions requires a common denominator.

The LCD is 15x^215x2

An equivalent fraction for each fraction must be found with the denominator 15x^215x2

color(magenta)[(x+2)/(5x^2])+color(blue)[(x+4)/(15x)]x+25x2+x+415x

color(magenta)[(x+2)/(5x^2) xx 3/3 = (3(x+2))/(15x^2])x+25x2×33=3(x+2)15x2

color(blue)[(x+4)/(15x) xx x/x = (x(x+4))/(15x^2)]x+415x×xx=x(x+4)15x2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(magenta)[(x+2)/(5x^2])+color(blue)[(x+4)/(15x)]x+25x2+x+415x

=color(magenta)[(3(x+2))/(15x^2)] + color(blue)[(x(x+4))/(15x^2) ]3(x+2)15x2+x(x+4)15x2

= [color(magenta)(3x+6) + color(blue)(x^2+4x])/(15x^2)3x+6+x2+4x15x2

= [x^2 + 7x+ 6]/(15x^2)x2+7x+615x2