How do you combine #(x^2)/(x+3) - 9/(x+3)#?
1 Answer
Mar 14, 2018
Explanation:
#"since the fractions have a "color(blue)"common denominator"#
#"we can subtract the numerators leaving the denominator"#
#rArrx^2/(x+3)-9/(x+3)#
#=(x^2-9)/(x+3)larrcolor(blue)"combined"#
#"this may be simplified further"#
#x^2-9" is a "color(blue)"difference of squares"#
#•color(white)(x)a^2-b^2=(a-b)(a+b)#
#rArrx^2-9=(x-3)(x+3)#
#rArr(x^2-9)/(x+3)#
#=((x-3)cancel((x+3)))/cancel((x+3))=x-3#