How do you complete the square to solve 0=5x^2 + 2x - 30=5x2+2x3?

1 Answer
Jul 3, 2015

x = 3/5x=35 or x = -1x=1

Explanation:

Step 1. Write your equation in standard form.

5x^2 + 2x -3 = 05x2+2x3=0

Step 2. Move the constant to the right hand side of the equation.

Add 33 to each side .

5x^2+2x -3 +3 = 0+35x2+2x3+3=0+3

5x^2+2x = 35x2+2x=3

Step 3. Divide both sides of the equation by the coefficient of x^2x2.

Divide both sides by 5.

x^2 +2/5x =3/5x2+25x=35

Step 4. Square the coefficient of x and divide by 4.

(2/5)^2/4 = (4/25)/4 = 1/25(25)24=4254=125

Step 5. Add the result to each side.

x^2 +2/5x + 1/25 =3/5 + 1/25x2+25x+125=35+125

x^2 +2/5x + 1/25= 15/25 + 1/25x2+25x+125=1525+125

x^2 +2/5x + 1/25 =16/25x2+25x+125=1625

Step 6. Take the square root of each side.

x+1/5 = ±4/5 x+15=±45

Case 1

x_1 + 1/5 = +4/5x1+15=+45

x_1 = 4/5-1/5 = (4-1)/5x1=4515=415

x_1 = 3/5x1=35

Case 2

x_2 + 1/5 = -4/5x2+15=45

x_2 = -4/5-1/5 = (-4-1)/5 = (-5)/5x2=4515=415=55

x_2 = -1x2=1

So x = 3/5x=35 or x = -1x=1

Check: Substitute the values of xx back into the quadratic.

(a) x = 3/5x=35

5x^2 + 2x -3 = 5(3/5)^2 + 2(3/5) -3 = 5(9/25) + 6/5 -3 = 9/5 +6/5 -15/5 = (9+6-15)/5 = 05x2+2x3=5(35)2+2(35)3=5(925)+653=95+65155=9+6155=0.

(b) x = -1x=1

5x^2 + 2x -3 = 5(-1)^2 + 2(-1) -3 = 5(1) – 2 -3 = 5-2-3 = 0