How do you convert #(18,-7)# into polar coordinates? Precalculus Polar Coordinates Converting Coordinates from Polar to Rectangular 1 Answer Alan P. Oct 27, 2016 Cartesinan: #(x,y)=18,-7) rarr # Polar: #(r,theta)=(19.31,-0.37)# #theta# given rn *radians# Explanation: #"radius" = sqrt(18^2+(-7)^2) ~~19.31321# (using a calculator) #theta = "arctan"(-7/18) ~~-0.37089# (again with teh calculator) Answer link Related questions What is the formula for converting polar coordinates to rectangular coordinates? How do I convert polar coordinates #(5, 30^circ)# to rectangular coordinates? How do I convert polar coordinates #(3.6, 56.31)# to rectangular coordinates? How do I convert polar coordinates #(10, -pi/4)# to rectangular coordinates? How do I convert polar coordinates #(4,-pi/3)# to rectangular coordinates? How do I convert polar coordinates #(6, 60^circ)# to rectangular coordinates? How do I convert polar coordinates #(-4, 230^circ)# to rectangular coordinates? What is the Cartesian equivalent of polar coordinates #(sqrt97, 66^circ)#? What is the Cartesian equivalent of polar coordinates #(2, pi/6)#? What is the Cartesian equivalent of polar coordinates #(7, pi)#? See all questions in Converting Coordinates from Polar to Rectangular Impact of this question 1636 views around the world You can reuse this answer Creative Commons License