How do you convert #(-2, -pi/2)# into rectangular coordinates? Precalculus Polar Coordinates Converting Coordinates from Polar to Rectangular 1 Answer sankarankalyanam Jul 9, 2018 #color(crimson)((x,y) = (0, -1)# Explanation: #"Given " (r,theta) = (-2, -pi/2)# #x = r cos theta = -2 cos (-(pi/2)) = 0 " as " cos (-pi/2) = 0# #y = r sin theta = -2 * sin (-pi/2) = 2 " as " sin (-pi/2) = -1# Answer link Related questions What is the formula for converting polar coordinates to rectangular coordinates? How do I convert polar coordinates #(5, 30^circ)# to rectangular coordinates? How do I convert polar coordinates #(3.6, 56.31)# to rectangular coordinates? How do I convert polar coordinates #(10, -pi/4)# to rectangular coordinates? How do I convert polar coordinates #(4,-pi/3)# to rectangular coordinates? How do I convert polar coordinates #(6, 60^circ)# to rectangular coordinates? How do I convert polar coordinates #(-4, 230^circ)# to rectangular coordinates? What is the Cartesian equivalent of polar coordinates #(sqrt97, 66^circ)#? What is the Cartesian equivalent of polar coordinates #(2, pi/6)#? What is the Cartesian equivalent of polar coordinates #(7, pi)#? See all questions in Converting Coordinates from Polar to Rectangular Impact of this question 4301 views around the world You can reuse this answer Creative Commons License