How do you convert the cartesian coordinate (18, −6) into polar coordinates? Precalculus Polar Coordinates Converting Coordinates from Rectangular to Polar 1 Answer José Roberto Pereira Oct 18, 2015 #18.97 /_-18.43^(o)# Explanation: #a^2=18^2+6^2# #a=sqrt(18^2+6^2)# #a=sqrt(360)=18.97# #theta=tg^-1(-6/18)=-18.43^(o)# Answer link Related questions What are the polar coordinates of #(0, -2)#? What are the polar coordinates of #(-4, 0)#? What are the polar coordinates of #(3, 4)#? What are the polar coordinates of #(-2,0)#? How do I convert Cartesian coordinates to polar coordinates? How do I find the polar form of #a+bi#? How do I find the polar form of #3sqrt2 - 3sqrt2i#? How do you change (4, -1) from rectangular to cylindrical coordinates between [0, 2π)? How do you change (0,3,-3) from rectangular to spherical coordinates? How do you find the rectangular coordinates if you given the cylindrical coordinate #(5, pi/6, 5)#? See all questions in Converting Coordinates from Rectangular to Polar Impact of this question 1770 views around the world You can reuse this answer Creative Commons License