How do you convert the Cartesian coordinates (1 , sqrt(3)) to polar coordinates? Precalculus Polar Coordinates Converting Coordinates from Rectangular to Polar 1 Answer Leland Adriano Alejandro Feb 16, 2016 #r=2# and #theta=pi/3# OR simply #(2, pi/3)# Explanation: give #x=1# and #y=sqrt3# #r=sqrt(x^2+y^2)=sqrt(1^2+sqrt3^2)=sqrt4=2# #theta=tan^-1(y/x)=tan^-1(sqrt3/1)=pi/3# God bless America !!! Answer link Related questions What are the polar coordinates of #(0, -2)#? What are the polar coordinates of #(-4, 0)#? What are the polar coordinates of #(3, 4)#? What are the polar coordinates of #(-2,0)#? How do I convert Cartesian coordinates to polar coordinates? How do I find the polar form of #a+bi#? How do I find the polar form of #3sqrt2 - 3sqrt2i#? How do you change (4, -1) from rectangular to cylindrical coordinates between [0, 2π)? How do you change (0,3,-3) from rectangular to spherical coordinates? How do you find the rectangular coordinates if you given the cylindrical coordinate #(5, pi/6, 5)#? See all questions in Converting Coordinates from Rectangular to Polar Impact of this question 4865 views around the world You can reuse this answer Creative Commons License