How do you convert the rectangular coordinate (-4.26,31.1)(4.26,31.1) into polar coordinates?

1 Answer
Oct 10, 2016

(31.3,pi/2)(31.3,π2)

Explanation:

Changing to polar coordinates means we have to find color(green)((r,theta)).

Knowing the relation between rectangular and polar coordinates that says:
color(blue)(x=rcostheta and y=rsintheta)

Given the rectangular coordinates:
x=-4.26 and y=31.3

x^2+y^2=(-4.26)^2+(31.3)^2
color(blue)((rcostheta )^2)+color(blue)((rsintheta)^2)=979.69
r^2cos^2theta+r^2sin^2theta=979.69
r^2(cos^2theta+sin^2theta)=979.69
Knowing the trigonometric identity that says:
color(red)(cos^2theta+sin^2theta=1)
We have:

r^2*color(red)1=979.69
r=sqrt(979.69)
color(green)(r=31.3)

Given:
color(blue)y=31.3
color(blue)(rsintheta)=31.3
color(green)31.3*sintheta31.3
sintheta=31.3/31.3
sintheta=1
color(green)(theta=pi/2)

Therefore,the polar coordinates are
(color(green)(31.3,pi/2))