How do you convert the rectangular coordinate #(-4.26,31.1)# into polar coordinates?

1 Answer
Oct 10, 2016

#(31.3,pi/2)#

Explanation:

Changing to polar coordinates means we have to find #color(green)((r,theta))#.

Knowing the relation between rectangular and polar coordinates that says:
#color(blue)(x=rcostheta and y=rsintheta)#

Given the rectangular coordinates:
#x=-4.26 and y=31.3#

#x^2+y^2=(-4.26)^2+(31.3)^2#
#color(blue)((rcostheta )^2)+color(blue)((rsintheta)^2)=979.69#
#r^2cos^2theta+r^2sin^2theta=979.69#
#r^2(cos^2theta+sin^2theta)=979.69#
Knowing the trigonometric identity that says:
#color(red)(cos^2theta+sin^2theta=1)#
We have:

#r^2*color(red)1=979.69#
#r=sqrt(979.69)#
#color(green)(r=31.3)#

Given:
#color(blue)y=31.3#
#color(blue)(rsintheta)=31.3#
#color(green)31.3*sintheta31.3#
#sintheta=31.3/31.3#
#sintheta=1#
#color(green)(theta=pi/2)#

Therefore,the polar coordinates are
#(color(green)(31.3,pi/2))#