The function:
#f(x) = 1/(x-2)^2#
is not continuous in the interval of integration so we must split the integral as:
#int_0^oo 1/(x-2)^2dx = int_0^2 1/(x-2)^2dx+ int_2^A 1/(x-2)^2dx + int_A^oo 1/(x-2)^2dx#
with #A > 2#
Now:
#int_0^2 1/(x-2)^2dx = lim_(t->2^-) int_0^t 1/(x-2)^2dx#
#int_0^2 1/(x-2)^2dx = lim_(t->2^-) [-1/(x-2)]_0^t#
#int_0^2 1/(x-2)^2dx = lim_(t->2^-) (1/(2-t)-1/2) = +oo#
and:
#int_2^A 1/(x-2)^2dx = lim_(t->2^+) int_t^A 1/(x-2)^2dx#
#int_2^A 1/(x-2)^2dx = lim_(t->2^+) [-1/(x-2)]_t^A#
#int_2^A 1/(x-2)^2dx = lim_(t->2^+) (-1/(A-2)+1/(t-2)) = +oo#
Finally:
#int_A^oo 1/(x-2)^2dx = lim_(t->oo) int_A^t 1/(x-2)^2dx#
#int_A^oo 1/(x-2)^2dx = lim_(t->oo) [-1/(x-2)]_A^t#
#int_A^oo 1/(x-2)^2dx = lim_(t->oo) (-1/(t-2) +1/(A-2)) = 1/(A-2)#
Thus the integral is not convergent.