How do you determine if the improper integral converges or diverges int 1/x*(lnx)^p dx1x(lnx)pdx from 2 to infinity?

1 Answer
Mar 15, 2016

Integrate by substitution and evaluate the limit.

Explanation:

For p != -1p1, we get

lim_(brarroo) int_2^b (lnx)^p 1/x dx = lim_(brarroo) (lnx)^(p+1)/(p+1)]_2^b

= 1/(p+1) lim_(brarroo)[(lnb)^(p+1) - (ln2)^(p+1)]

For p > -1, we have lim_(brarroo) (lnb)^(p+1) = oo so the integral diverges.

For p < -1, we have lim_(brarroo) (lnb)^(p+1) = 0 so the integral converges.

For p = -1, we get int 1/(xlnx) dx = ln(lnx), so the integral diverges.