How do you determine if the improper integral converges or diverges int [e^(1/x)] / [x^3] from 0 to 1?

1 Answer
May 12, 2017

The integral diverges.

Explanation:

First focusing on the integral without bounds:

inte^(1/x)/x^3dx

Let t=1/x this implies that dt=-1/x^2dx, so the integral can be rewritten as:

=-inte^(1/x)(1/x)(-1/x^2)dx=-intte^tdt

Performing integration by parts, letting:

{(u=t,=>,du=dt),(dv=e^tdt,=>,v=e^t):}

=-(te^t-inte^tdt)=-e^t(t+1)=e^(1/x)(1-1/x)

So:

int_0^1e^(1/x)/x^3dx=e^(1/x)(1-1/x)| _ 0^1

=e(1-1) - lim _ (xrarr0^+)e^(1/x)(1-1/x)

As xrarr0, 1/xrarroo and e^(1/x)rarroo. Together, the limit will also be oo, so the integral diverges.