How do you determine if the improper integral converges or diverges int [e^(1/x)] / [x^3] from 0 to 1?
1 Answer
May 12, 2017
The integral diverges.
Explanation:
First focusing on the integral without bounds:
inte^(1/x)/x^3dx
Let
=-inte^(1/x)(1/x)(-1/x^2)dx=-intte^tdt
Performing integration by parts, letting:
{(u=t,=>,du=dt),(dv=e^tdt,=>,v=e^t):}
=-(te^t-inte^tdt)=-e^t(t+1)=e^(1/x)(1-1/x)
So:
int_0^1e^(1/x)/x^3dx=e^(1/x)(1-1/x)| _ 0^1
=e(1-1) - lim _ (xrarr0^+)e^(1/x)(1-1/x)
As