How do you determine if the improper integral converges or diverges int (e^x)/(e^2x + 1) dx∫exe2x+1dx from 0 to infinity?
1 Answer
The integral converges, and:
int_0^oo \ (e^x)/(e^(2x)+1) \ dx = pi/4
Explanation:
Assuming a correction, let us first find:
I = int \ (e^x)/(e^(2x)+1) \ dx
The utilising a substitution if
I = int \ (1)/(u^2+1) \ du
Which is a standard integral, and so integrating:
I = arctan (u) + C
And then reversing the earlier substitution:
I = arctan (e^x) + C
If we look at the graph of the function, it would appear as if the bounded area is finite:
graph{(e^x)/(e^(2x)+1) [-10, 10, -2, 2]}
So let us test this prediction analytically. Consider the improper definite integral:
J = int_0^oo \ (e^x)/(e^(2x)+1) \ dx
\ \ = lim_(n rarr oo) [arctan (e^x)]_0^n
\ \ = lim_(n rarr oo) (arctan (e^n)) -arctan (e^0)
Now, as
J = lim_(n rarr oo) (arctan n) - arctan (1)
\ \ = pi/2-pi/4
\ \ = pi/4