How do you determine if the improper integral converges or diverges #int (e^x)/(e^2x + 1) dx# from 0 to infinity?
1 Answer
The integral converges, and:
# int_0^oo \ (e^x)/(e^(2x)+1) \ dx = pi/4 #
Explanation:
Assuming a correction, let us first find:
# I = int \ (e^x)/(e^(2x)+1) \ dx #
The utilising a substitution if
# I = int \ (1)/(u^2+1) \ du #
Which is a standard integral, and so integrating:
# I = arctan (u) + C #
And then reversing the earlier substitution:
# I = arctan (e^x) + C #
If we look at the graph of the function, it would appear as if the bounded area is finite:
graph{(e^x)/(e^(2x)+1) [-10, 10, -2, 2]}
So let us test this prediction analytically. Consider the improper definite integral:
# J = int_0^oo \ (e^x)/(e^(2x)+1) \ dx #
# \ \ = lim_(n rarr oo) [arctan (e^x)]_0^n#
# \ \ = lim_(n rarr oo) (arctan (e^n)) -arctan (e^0)#
Now, as
# J = lim_(n rarr oo) (arctan n) - arctan (1)#
# \ \ = pi/2-pi/4#
# \ \ = pi/4#