How do you determine if the improper integral converges or diverges int (e^x)/(e^2x + 1) dxexe2x+1dx from 0 to infinity?

1 Answer
Jan 30, 2018

The integral converges, and:

int_0^oo \ (e^x)/(e^(2x)+1) \ dx = pi/4

Explanation:

Assuming a correction, let us first find:

I = int \ (e^x)/(e^(2x)+1) \ dx

The utilising a substitution if u=e^x => (du)/dx=e^x yields:

I = int \ (1)/(u^2+1) \ du

Which is a standard integral, and so integrating:

I = arctan (u) + C

And then reversing the earlier substitution:

I = arctan (e^x) + C

If we look at the graph of the function, it would appear as if the bounded area is finite:

graph{(e^x)/(e^(2x)+1) [-10, 10, -2, 2]}

So let us test this prediction analytically. Consider the improper definite integral:

J = int_0^oo \ (e^x)/(e^(2x)+1) \ dx

\ \ = lim_(n rarr oo) [arctan (e^x)]_0^n

\ \ = lim_(n rarr oo) (arctan (e^n)) -arctan (e^0)

Now, as x rarr oo => e^x rarr oo, thus:

J = lim_(n rarr oo) (arctan n) - arctan (1)

\ \ = pi/2-pi/4

\ \ = pi/4