How do you determine if the improper integral converges or diverges #int ln(x)dx# from 0 to 2?
1 Answer
It converges to
Explanation:
Note that
So, applying this on the interval
#int_0^2ln(x)dx=[xln(x)-x]_0^2#
We cannot evaluate
#=(2ln(2)-2)-lim_(xrarr0)(xln(x)-x)#
The limit can be simplified in regard to the subtracted
#=(2ln(2)-2)-lim_(xrarr0)xln(x)#
This can be rewritten (rather sneakily) to prime for l'Hopital's rule:
#=(2ln(2)-2)-lim_(xrarr0)ln(x)/(1/x)#
The limit is in the indeterminate form
#=(2ln(2)-2)-lim_(xrarr0)(d/dxln(x))/(d/dx(1/x))#
#=(2ln(2)-2)-lim_(xrarr0)(1/x)/(-1/x^2)#
#=(2ln(2)-2)-lim_(xrarr0)(-x)#
The limit can now be evaluated:
#=(2ln(2)-2)-0#
#=2ln(2)-2#