How do you determine if the improper integral converges or diverges int [ (x arctan x) / (1+x^2)^2 ] dx[xarctanx(1+x2)2]dx from negative 0 to infinity?

Since "negative 00" is 00, we deal with the problem as int_0^oo(xarctanx)/(1+x^2)^2dx0xarctanx(1+x2)2dx

1 Answer
Aug 15, 2016

Given Improper Integral converges to pi/8π8.

Explanation:

Let I=int_0^oo (xarctanx)/(1+x^2)^2dxI=0xarctanx(1+x2)2dx.

We subst. x=tant rArr arctanx=t, and, dx=sec^2tdtx=tantarctanx=t,and,dx=sec2tdt.

Also, (xarctanx)/(1+x^2)^2=((t)(tant))/(1+tan^2t)^2=(t*tant)/sec^4txarctanx(1+x2)2=(t)(tant)(1+tan2t)2=ttantsec4t

Further, x=0rArrtant=0rArrt=0, &, xrarroo, trarrpi/2x=0tant=0t=0,&,x,tπ2

:. I=int_0^(pi/2) (t*tant)/sec^4t*sec^2tdt=int_0^(pi/2) t*sint/cost*cos^2tdt

=int_0^(pi/2) tsintcostdt=1/2inttsin(2t)dt

=1/2[t(-cos(2t)/2]_0^(pi/2)-1/2int_0^(pi/2)1*(-cos(2t)/2)dt

=-1/4[pi/2*cos(2*pi/2)-0]+1/4int_0^(pi/2)cos(2t)dt

=-1/4(-pi/2)+1/4[sin(2t)/2]_0^(pi/2)

=pi/8+1/8[sinpi-sin0]

=pi/8.

Hence, the given Improper Integral I converges to pi/8.