We must calculate the derivative f'(x)=(u'v-uv')/v^2
u=x=>u'=1
v=x^2+1=>v'=2x
:. f'(x)=(1*(x^2+1)-x*2x)/(x^2+1)^2=(x^2+1-2x^2)/(x^2+1)^2
=(1-x^2)/(x^2+1)^2=((1+x)(1-x))/(x^2+1)^2
f'(x)=0 when x=1 and x=-1
We do a sign chart for f'(x)
color(white)(aaaaa)xcolor(white)(aaaaa)-oocolor(white)(aaaaa)-1color(white)(aaaaa)1color(white)(aaaaa)+oo
color(white)(aaa)f'(x)color(white)(aaaaaaaaa)-color(white)(aaaaa)+color(white)(aaaa)-
color(white)(aaa)f(x)color(white)(aaaaaaaaaa)darrcolor(white)(aaaaa)uarrcolor(white)(aaaa)darr
The limits when f(x) is increasing is x in [-1, 1]
The limits when f(x) is decreasing is x in ] -oo,-1 [ uu ] 1, oo[
graph{x/(x^2+1) [-3.077, 3.08, -1.538, 1.54]}