How do you differentiate 2cos^2(x)?

1 Answer
Jan 19, 2017

(dy)/(dx) =-4cosxsinx

Explanation:

To differentiate y=2cos^2x we need the chain rule

(dy)/(dx)=(dy)/(du)xx(du)/(dx)

let u=cosx=>y=2u^2

(du)/(dx)=-sinx

(dy)/(du)=4u

:.(dy)/(dx)=4uxx(-sinx)

substitute back for u

(dy)/(dx) =-4cosxsinx