How do you differentiate cos(12x)2?

1 Answer
May 8, 2018

dydx=4cos(12x)sin(12x)

Explanation:

First, let cos(12x)=u

So, y=u2

dydx=dydududx

dydu=2u

dudx=ddx[cos(12x)]=ddx[cos(v)]

dudx=dudvdvdx

dydx=dydududvdvdx

dudv=sin(v)
dvdx=2

dydx=2usin(v)2

dydx=4usin(v)

dydx=4cos(12x)sin(12x)