How do you differentiate Cos^4(2x)cos4(2x)?

1 Answer
Feb 20, 2017

dy/dx=-8cos^3 2xsin2xdydx=8cos32xsin2x

Explanation:

For a function y=[fg(x)]^ny=[fg(x)]n, dy/dx=n[f(x)]^(n-1)(f'(g(x)))(g'(x))

In essence, we apply the power rule to the whole function and multiply it by the derivatives of the function in the brackets; in this case, cos(2x).

Let y=cos^4(2x)

dy/dx=4cos^3 2x(-sin2x)(2)=-8cos^3 2xsin2x