How do you differentiate f(x)=4/cosxf(x)=4cosx?
1 Answer
Aug 23, 2016
Explanation:
differentiate using the
color(blue)"chain rule"chain rule
color(red)(|bar(ul(color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))........ (A)
y=f(x)=4/(cosx)=4(cosx)^-1 let
u = cosxrArr(du)/(dx)=-sinx and
y=4u^-1rArr(dy)/(du)=-4u^-2 substitute these values into (A) convert u back into terms of x
rArrdy/dx=-4u^-2(-sinx)=(4sinx)/(cos^2x)=(4sinx)/cosx xx1/cosx
color(orange)"Reminder"
color(red)(|bar(ul(color(white)(a/a)color(black)(tanx=(sinx)/(cosx)" and " secx=1/(cosx))color(white)(a/a)|)))
rArrdy/dx=4tanxsecx Note that f(x) may also be differentiated using the
color(blue)"quotient rule"