How do you differentiate f(x)=4/cosxf(x)=4cosx?

1 Answer
Aug 23, 2016

4tanxsecx4tanxsecx

Explanation:

differentiate using the color(blue)"chain rule"chain rule

color(red)(|bar(ul(color(white)(a/a)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(a/a)|)))........ (A)

y=f(x)=4/(cosx)=4(cosx)^-1

let u = cosxrArr(du)/(dx)=-sinx

and y=4u^-1rArr(dy)/(du)=-4u^-2

substitute these values into (A) convert u back into terms of x

rArrdy/dx=-4u^-2(-sinx)=(4sinx)/(cos^2x)=(4sinx)/cosx xx1/cosx

color(orange)"Reminder"

color(red)(|bar(ul(color(white)(a/a)color(black)(tanx=(sinx)/(cosx)" and " secx=1/(cosx))color(white)(a/a)|)))

rArrdy/dx=4tanxsecx

Note that f(x) may also be differentiated using the color(blue)"quotient rule"