How do you differentiate f(x) = (cos^4 x - x) / sec xf(x)=cos4xxsecx?

1 Answer
Aug 4, 2017

f'(x)=xsinx-5sinxcos^4x-cosx.

Explanation:

We have, f(x)=(cos^4x-x)/secx=(cos^4x-x)cosx,

:. f(x)=cos^5x-xcosx.

:. f'(x)=d/dx{(cosx)^5}-d/dx{xcosx}.

Using the Chain Rule & Product Rule, we get,

f'(x)=5(cosx)^(5-1)*d/dx{cosx}-[xd/dx{cosx}+cosx*d/dx{x}],

=5cos^4x*(-sinx)-[x(-sinx)+cosx*1],

=-5sinxcos^4x+xsinx-cosx,

rArr f'(x)=xsinx-5sinxcos^4x-cosx.