How do you differentiate f(x) =sin(3x-2)* cos(3x -2) f(x)=sin(3x2)cos(3x2)?

1 Answer

Remember that

sin2A=2*sinA*cosAsin2A=2sinAcosA

Hence

f(x)=sin(3x-2)*cos(3x-2)=>f(x)=1/2*sin(2*(3x-2))f(x)=sin(3x2)cos(3x2)f(x)=12sin(2(3x2))

Hence

(df)/dx=1/2*cos(2(3x-2))*6=3*cos(6x-4)=dfdx=12cos(2(3x2))6=3cos(6x4)=

Finally

f'(x)=3*cos(6x-4)