How do you differentiate f(x)=sin^3xcosxf(x)=sin3xcosx?

1 Answer
Jun 28, 2017

f'(x)=3sin^2xcos^2x-sin^4x

Explanation:

"differentiate using the "color(blue)"product rule"

"given " f(x)=g(x).h(x)" then"

f'(x)=g(x)h'(x)+h(x)g'(x)larr" product rule"

g(x)=sin^3x=(sinx)^3

"differentiate using the "color(blue)"chain rule"

g'(x)=3(sinx)^2xxd/dx(sinx)=3sin^2xcosx

h(x)=cosxrArrh'(x)=-sinx

rArrf'(x)=sin^3x(-sinx)+3sin^2xcosx(cosx)

color(white)(rArrf'(x))=3sin^2cos^2x-sin^4x