How do you differentiate f(x)=sin^3xcosxf(x)=sin3xcosx?
1 Answer
Jun 28, 2017
Explanation:
"differentiate using the "color(blue)"product rule"
"given " f(x)=g(x).h(x)" then"
f'(x)=g(x)h'(x)+h(x)g'(x)larr" product rule"
g(x)=sin^3x=(sinx)^3
"differentiate using the "color(blue)"chain rule"
g'(x)=3(sinx)^2xxd/dx(sinx)=3sin^2xcosx
h(x)=cosxrArrh'(x)=-sinx
rArrf'(x)=sin^3x(-sinx)+3sin^2xcosx(cosx)
color(white)(rArrf'(x))=3sin^2cos^2x-sin^4x