How do you differentiate f(x) =(sin x + tan x)/(sin x-cos x) f(x)=sinx+tanxsinxcosx?

1 Answer
Dec 21, 2015

f'(x)=((cosx-sec^2x)(sinx-cosx)-(cosx+sinx)(sinx+tanx))/(sinx-cosx)^2

Explanation:

Original equation:
f(x)=(sinx+tanx)/(sinx-cosx)

Use the quotient rule to derive.

Derive the top and times by the bottom:
(cosx-sec^2x)(sinx-cosx)

Derive the bottom and multiply by the top:
(cosx+sinx)(sinx+tanx)

Subtract the two:
(cosx-sec^2x)(sinx-cosx)-(cosx+sinx)(sinx+tanx)

Place it over the bottom squared:
((cosx-sec^2x)(sinx-cosx)-(cosx+sinx)(sinx+tanx))/(sinx-cosx)^2

Your final answer should be:
f'(x)=((cosx-sec^2x)(sinx-cosx)-(cosx+sinx)(sinx+tanx))/(sinx-cosx)^2