How do you differentiate f(x) =[(sin x + tan x)/(sin xcos x)]^3 f(x)=[sinx+tanxsinxcosx]3?

1 Answer

color(red)(f' (x)=3*sec^3 x*tan x*(1+sec x)^2(1+2*sec x))

Explanation:

Start from the given f (x)=[(sin x+ tan x)/(sin x cos x)]^3 and simplify it first

f(x)=[sin x/(sin x cos x)+tan x/(sin x cos x)]^3

f(x)=[cancelsin x/(cancelsin x cos x)+(cancelsin x/cos x)*1/(cancelsin x cos x)]^3

f(x)=[1/( cos x)+(1/cos x)*1/(cos x)]^3

f(x)=[1/( cos x)+1/cos^2 x]^3

f(x)=[sec x+sec^2 x]^3

At this point we differentiate using the power formula
d/dx(u^n)=n*u^(n-1)*d/dx(u)

f(x)=[sec x+sec^2 x]^3

f' (x)=d/dx[sec x+sec^2 x]^3

f' (x)=3*[sec x+sec^2 x]^(3-1)*d/dx(sec x+sec^2 x)

f' (x)=3*[sec x+sec^2 x]^2*(sec x*tan x+2*(sec x)^(2-1)d/dx(sec x))

f' (x)=3*[sec x+sec^2 x]^2*(sec x*tan x+2*sec x*(sec x*tan x))

f' (x)=3*[sec x+sec^2 x]^2*(sec x*tan x+2*sec^2 x*tan x)

color(red)(f' (x)=3*sec^3 x*tan x*(1+sec x)^2(1+2*sec x))

God bless...I hope the explanation is useful.