How do you differentiate f(x) = tan^2(3x) ?

1 Answer
Mar 26, 2018

If " f(x) = "tan^2(3x), then

color(blue)((d)/(dx) f(x) = f'(x)=6 sec^2 (3x) * tan (3x)

Explanation:

Given:

f(x) = "tan^2(3x)

We can write this function as

f(x) = "tan(3x)^2

d/(dx) tan(3x)^2

rArr 2 tan (3x) (d/dx) tan (3x)

rArr 2 *tan (3x) *Sec^2 (3x)*3

rArr 6*sec^2(3x)*tan(3x)

Hence,

color(blue)((d)/(dx) f(x) = f'(x)= "6 sec^2 (3x) * tan (3x)