How do you differentiate f(x) = x/(1-ln(x-1))?
1 Answer
Apr 25, 2017
Explanation:
differentiate using the
color(blue)"quotient rule"
"Given " f(x)=(g(x))/(h(x))" then"
f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larr" quotient rule"
"here " g(x)=xrArrg'(x)=1
"and " h(x)=1-ln(x-1)
color(orange)"Reminder " d/dx(ln(f(x)))=(f'(x))/((f(x))
rArrh'(x)=-(1)/(x-1)
rArrf'(x)=(1-ln(x-1)-x(- 1/(x-1)))/(1-ln(x-1))^2
color(white)(rArrf'(x))=(1-ln(x-1)+x/(x-1))/(1-ln(x-1))^2