How do you differentiate ln(cos^2(x))?

2 Answers
May 29, 2018

-2tanx

Explanation:

d/dx[ln(cos^2(x))]

Differentiate,

1/(cos^2(x))*d/dx[cos^2(x)]

Differentiate second term,

1/(cos^2(x))*-2sinxcosx

Multiply,

-(2sinxcancel(cosx))/(cos^cancel(2)(x))

Simplify,

-(2sinx)/(cosx)

Refine,

-2tanx

May 29, 2018

As above

Explanation:

Alternatively, you could say:
ln(cos^2(x)) = 2ln(cosx)

Then:
d/dx(ln(cos^2(x)))
= 2*d/dx(ln(cosx))
= 2* (-sinx)/cosx
= -2tanx