How do you differentiate the following parametric equation: x(t)=3(t+1)^2+2e^t, y(t)= (t+2)^2+t^2?

1 Answer
Dec 3, 2015

(dy)/(dx) = (3(t+1))/(2t+1)

Explanation:

Step 1: Find (dx)/(dt)
Step 2: Find (dy)/(dt)
3) Step 3: (dy)/(dt) = (dx)/(dt) * (dy)/(dx) hArr (dy)/(dx)= [(dy)/(dt)]/[(dx)/(dt)]

Step 1: Given x(t)= 3(t+1)^2
x'(t) = (dx)/(dt)= 3(2)(t+1)(1)

color(red)((dx)/(dt)= 6(t+1))

Step 2: Given y(t)= (t+2)^2 +t^2
y'(t) = (dy)/(dt)= 2(t+2)(1)+2t

(dy)/(dt)= 2t+4+2t = 4t+2
color(blue)((dy)/(dt)= 4t+2 = 2(2t+1))

Step 3: (dy)/(dt) = (dx)/(dt) * (dy)/(dx) hArr (dy)/(dx)= [(dy)/(dt)]/[(dx)/(dt)]

(dy)/(dx)= color(red)(6(t+1))/color(blue)(2(2t+1))

(dy)/(dx) = (3(t+1))/(2t+1)