How do you differentiate the following parametric equation: # x(t)=3(t+1)^2+2e^t, y(t)= (t+2)^2+t^2#?

1 Answer
Dec 3, 2015

#(dy)/(dx) = (3(t+1))/(2t+1)#

Explanation:

Step 1: Find #(dx)/(dt)#
Step 2: Find #(dy)/(dt)#
3) Step 3: #(dy)/(dt) = (dx)/(dt) * (dy)/(dx) hArr (dy)/(dx)= [(dy)/(dt)]/[(dx)/(dt)]#

Step 1: Given #x(t)= 3(t+1)^2#
#x'(t) = (dx)/(dt)= 3(2)(t+1)(1) #

#color(red)((dx)/(dt)= 6(t+1))#

Step 2: Given #y(t)= (t+2)^2 +t^2#
#y'(t) = (dy)/(dt)= 2(t+2)(1)+2t#

#(dy)/(dt)= 2t+4+2t = 4t+2#
#color(blue)((dy)/(dt)= 4t+2 = 2(2t+1))#

Step 3: #(dy)/(dt) = (dx)/(dt) * (dy)/(dx) hArr (dy)/(dx)= [(dy)/(dt)]/[(dx)/(dt)]#

#(dy)/(dx)= color(red)(6(t+1))/color(blue)(2(2t+1))#

#(dy)/(dx) = (3(t+1))/(2t+1)#