How do you differentiate the following parametric equation: x(t)=lnt/t, y(t)=(t-3)^2 ?

1 Answer
Mar 4, 2017

dy/dx={2t^2(t-3)}/(1-lnt), t!=0,t!=e.

Explanation:

By the Rule of Parametric Diffn., dy/dx=(y'(t))/(x'(t)), x'(t)!=0.

Now, using the Chain Rule,

y'(t)=d/dt{(t-3)^2}=2(t-3)d/dt{(t-3)}.

:. y'(t)=2(t-3)........(1).

Next, x(t)=lnt/t

:. x'(t)={td/dt(lnt)-(lnt)d/dt(t)]/t^2...."[The Quotient Rule]"

={t(1/t)-(lnt)(1)]/t^2

:. x'(t)=(1-lnt)/t^2..........(2).

Also, let us note that,

x'(t)=0 rArr t=e, or, t!=e rArr x'(t)!=0.........(2').

Altogether, taking into account (1),(2), and (2'),

dy/dx={2(t-3)}/{(1-lnt)/t^2}

:. dy/dx={2t^2(t-3)}/(1-lnt), t!=0,t!=e.

Enjoy Maths.!