How do you differentiate y=2cscx+5cosx?

1 Answer
Mar 20, 2018

The derivative is 5sinx2cotxcscx.

Explanation:

=ddx(2cscx+5cosx)

=ddx(2cscx)+ddx(5cosx)

=2ddx(cscx)+5ddx(cosx)

=2ddx(cscx)+5sinx

=2ddx(cscx)5sinx

(I'm going to switch some terms around just so it's easier to look at.)

=2ddx(cscx)5sinx

=5sinx+2ddx(cscx)

=5sinx+2ddx(1sinx)

Quotient rule:

=5sinx+2(ddx(1)sinx1ddx(sinx)(sinx)2)

=5sinx+2(0sinx1ddx(sinx)sin2x)

=5sinx+2(0sinx1cosxsin2x)

=5sinx+2(cosxsin2x)

=5sinx+2(cosxsinx1sinx)

=5sinx+2(cotxcscx)

=5sinx2cotxcscx

That's the answer. Hope this helped!