How do you differentiate Y = (cos x)^2 - cos xY=(cosx)2cosx?

1 Answer
Mar 13, 2018

dy/dx=sinx-sin2xdydx=sinxsin2x

Explanation:

"differentiate "(cosx)^2" using the "color(blue)"chain rule"differentiate (cosx)2 using the chain rule

"Given "y=f(g(x))" then"Given y=f(g(x)) then

dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"dydx=f'(g(x))×g'(x)chain rule

rArrd/dx((cosx)^2)=2cosx xxd/dx(cosx)

color(white)(xxxxxxxxxxxx)=-2sinxcosx=-sin2x

y=(cosx)^2-cosx

rArrdy/dx=-sin2x-(-sinx)

color(white)(rArrdy/dx)=sinx-sin2x