How do you differentiate y=sin^-1sqrtx?

1 Answer
Nov 23, 2016

dy/dx = 1/(2sqrtxsqrt(1 -x))

Explanation:

y= sin^-1sqrtx <=> siny=x^(1/2)

Differentiating (Implicitly) wrt x:

cosydy/dx = 1/2x^(-1/2)
:. cosydy/dx = 1/(2sqrtx)

Using the Identity sin^y+cos^2y -= 1
:. (x^(1/2))^2 + cos^2y = 1
:. x + cos^2y = 1
:. cos^2y = 1 -x
:. cosy = sqrt(1 -x)

And so:
:. sqrt(1 -x)dy/dx = 1/(2sqrtx)
:. dy/dx = 1/(2sqrtxsqrt(1 -x))