How do you differentiate y = (x + tan 2pi x )^2y=(x+tan2πx)2?

1 Answer
Jul 6, 2018

y'=2(x+tan(2pix))(1+2pi*(1+tan^2(2pix))

Explanation:

We use that

(tan(x))'=1/cos^2(x)=(sin^2(x)+cos^2(x))/cos^2(x)=1+tan^2(x)
and
(x^n)'=nx^(n-1)#
and the chain rule:

(f(g(x)))'=f'(g(x))*g'(x)
so we get

y'=2(x+tan(2pix))(1+2pi(1+tan^2(2pix)))