How do you divide (2x^3 - 11x^2 + 12x + 9)/(x-3)?

2 Answers
Jul 27, 2018

The remainder is 0 and the quotient is =2x^2-5x-3

Explanation:

Let's perform the synthetic division

color(white)(aaaa)3|color(white)(aaaa)2color(white)(aaaa)-11color(white)(aaaaaa)12color(white)(aaaaa)9

color(white)(aaaaa)|color(white)(aaaa)color(white)(aaaaaaa)6color(white)(aaaaa)-15color(white)(aaa)-9

color(white)(aaaaaaaaa)_________

color(white)(aaaaa)|color(white)(aaaa)2color(white)(aaaaa)-5color(white)(aaaaa)-3color(white)(aaaaa)color(red)(0)

The remainder is 0 and the quotient is =2x^2-5x-3

(2x^3-11x^2+12x+9)/(x-3)=2x^2-5x-3

Apply the remainder theorem

When a polynomial f(x) is divided by (x-c), we get

f(x)=(x-c)q(x)+r

Let x=c

Then,

f(c)=0+r

Here,

f(x)=2x^3-11x^2+12x+9

Therefore,

f(3)=2*3^3-11*3^2+12*3+9

=54-99+36+9

=0

The remainder is =0

Jul 27, 2018

(2x^3-11x^2+12x+9)=(x-3)(2x^2-5x-3)+(0)

Explanation:

(2x^3-11x^2+12x+9)div(x-3)

We can divide this polynomial by using synthetic division

We have , p(x)=2x^3-11x^2+12x+9 and "divisor :"x=3

We take ,coefficients of p(x) to 2,-11,12 ,9

. 3 | 2color(white)(....)-11color(white)(.......)12color(white)(.......)9
ulcolor(white)()| ul(0color(white)( ..........)6color(white)(....)-15color(white)(...)-9
color(white)(......)2color(white)(......)-5color(white)(...)color(white)(..)-3color(white)(.....)color(violet)(ul|0|
We can see that , quotient polynomial :

q(x)=2x^2-5x-3 and"the Remainder"=0

Hence ,

(2x^3-11x^2+12x+9)=(x-3)(2x^2-5x-3)+(0)