How do you divide #(2x^3+2x^2+4x+4)/(x^2+8x+4)#?

1 Answer
Aug 8, 2018

#(color(blue)(2x^3+2x^2+4x+4))/color(red)(x^2+8x+4)=color(green)((2x-14))+(108x+60)/color(red)(x^2+8x+4)#

Explanation:

Here ,

Dividend #:color(blue)(2x^3+2x^2+4x+4) and#

divisor #: color(red)(x^2+8x+4)#

So ,

#color(white)(..................................)color(green)(ul(2x-14color(white)(.........))larrquotient#
#color(white)(..........)color(red)((x^2+8x+4)) # #|color(blue)(2x^3+2x^2+4x+4)# ##

#color(white)()color(violet)((color(red)(x^2+8x+4))*2xtocolor(white)()ul(2x^3+16x^2+8x)##color(white)(.......)lArr"subtract"#
#color(white)(.....................................)-14x^2-4x+4#

#color(white)()color(violet)((color(red)(x^2+8x+4))(-14)tocolor(white)()ul(-14x^2-112x-56)##color(white)(.......)lArr"subtract"#
#color(white)(..........................................)color(green)(##color(white)(.........)108x+60larr"Remainder"#

Hence ,

#(color(blue)(2x^3+2x^2+4x+4))#=#(color(red)(x^2+8x+4))(2x-14)+(108x+60)#

#Quotient :q(x)=color(green)(2x-14# #"and Remainder " :r(x)=108x+60#