How do you divide (2x^3+ 3 x^2-4x-2)/(x+2) ?

1 Answer
Mar 12, 2018

=(2x^2-x-2)+2/(x+2)

Explanation:

We know that,
Dividend-: Divisor = quotient and remainder.In short,
Dividend = Divisor xx quotient + remainder.
Now,divisor is (x+2),and
dividend=2x^3+3x^2-4x-2=2x^3+4x^2-x^2-2x-2x-4+2
=2x^2(x+2)-x(x+2)-2(x+2)+color(red)(2)
=(x+2)(2x^2-x-2)+2
i.e.quotient=(2x^2-x-2),and remainder=2.
So,
2x^3+3x^2-4x-2=(x+2)(2x^2-x-2)+2
Hence,
(2x^3+3x^2-4x-2)/(x+2)=[(x+2)(2x^2-x-2)+2]/(x+2)
=((x+2)(2x^2-x-2))/(x+2)+2/(x+2)
=(2x^2-x-2)+color(red)(2/(x+2)