How do you divide (2x^3-5x^2+4x+12)/(x-7) ?

2 Answers
Jun 16, 2017

2x^2+9x+67+481/(x-7)

Explanation:

"one way is to use the divisor as a factor in the numerator"

"consider the numerator"

color(red)(2x^2)(x-7)color(magenta)(+14x^2)-5x^2+4x+12

=color(red)(2x^2)(x-7)color(red)(+9x)(x-7)color(magenta)(+63x)+4x+12

=color(red)(2x^2)(x-7)color(red)(+9x)(x-7)color(red)(+67)(x-7)color(magenta)(+469)+12

=color(red)(2x^2)(x-7)color(red)(+9x)(x-7)color(red)(+67)(x-7)+481

"quotient "=color(red)(2x^2+9x+67)", remainder "=481

rArr(2x^3-5x^2+4x+12)/(x-7)

=2x^2+9x+67+481/(x-7)

Jun 16, 2017

color(blue)(2x^2+9x+67 plus remainder of color(blue)481

Explanation:

color(white)(.............)ul(color(blue)(2x^2+9x+67)
color(white)(aa)x-7|2x^3-5x^2+4x+12
color(white)(..............)ul(2x^3-14x^3)
color(white)(........................)9x^2+4x
color(white)(........................)ul(9x^2-63x)
color(white)(..............................)67x+12
color(white)(..............................)ul(67x-469)
color(white)(........................................)481