How do you divide #(2x^3+7x^2-5x-4) / (2x+1)#? Algebra Rational Equations and Functions Division of Polynomials 1 Answer P dilip_k Feb 28, 2016 #(2x^3+7x^2-5x-4)/(2x+1)# #=(x^2(2x+1)-x^2+7x^2-5x-4)/(2x+1)# #=(x^2(2x+1)+6x^2-5x-4)/(2x+1)# #=(x^2(2x+1)+3x(2x+1)-3x-5x-4)/(2x+1)# #=(x^2(2x+1)+3x(2x+1)-8x-4)/(2x+1)# #=(x^2(2x+1)+3x(2x+1)-4(2x+1))/(2x+1)# #=x^2+3x-4# Answer link Related questions What is an example of long division of polynomials? How do you do long division of polynomials with remainders? How do you divide #9x^2-16# by #3x+4#? How do you divide #\frac{x^2+2x-5}{x}#? How do you divide #\frac{x^2+3x+6}{x+1}#? How do you divide #\frac{x^4-2x}{8x+24}#? How do you divide: #(4x^2-10x-24)# divide by (2x+3)? How do you divide: #5a^2+6a-9# into #25a^4#? How do you simplify #(3m^22 + 27 mn - 12)/(3m)#? How do you simplify #(25-a^2) / (a^2 +a -30)#? See all questions in Division of Polynomials Impact of this question 2104 views around the world You can reuse this answer Creative Commons License