How do you divide ( 2x^4 - 5x^3 - 8x^2+17x+1 )/(x^2 - 2 )?

1 Answer
Jun 14, 2017

(2 x^4 - 5 x^3 - 8 x^2 + 17 x + 1 )/(x^2 - 2)= (2 x^2 - 5 x - 4) + (7 x - 7 )/(x^2-2)

Explanation:

The first thing we should do when trying to divide two rational functions is to see if the denominator is a zero of the numerator.

Let f(x)=2x^4-5x^3-8x^2+17x+1

f(sqrt2)=-7+7sqrt2

We know that any rational function can be written as: f(x)=p(x)q(x)+r(x). Thus we can say:

2 x^4 - 5 x^3 - 8 x^2 + 17 x + 1 =(ax^2+bx+c)(x^2-2)+7x-7

This is because when (x^2-2)=0, the remainder was (7x-7). So r(x)=7x-7. We already know q(x) and we need to work out p(x).

2x^4-5x^3-8x^2+10x+8=(ax^2+bx+c)(x^2-2)

ax^4=2x^4rArra=2

bx^3=-5x^3rArrb=-5

-2c=8rArrc=-4

2x^4-5x^3-8x^2+10x+8=(2x^2-5x-4)(x^2-2)

2 x^4 - 5 x^3 - 8 x^2 + 17 x + 1=(2x^2-5x-4)(x^2-2) +7x-7

(2 x^4 - 5 x^3 - 8 x^2 + 17 x + 1 )/(x^2 - 2)= (2 x^2 - 5 x - 4) + (7 x - 7 )/(x^2-2)