The first thing we should do when trying to divide two rational functions is to see if the denominator is a zero of the numerator.
Let f(x)=2x^4-5x^3-8x^2+17x+1
f(sqrt2)=-7+7sqrt2
We know that any rational function can be written as: f(x)=p(x)q(x)+r(x). Thus we can say:
2 x^4 - 5 x^3 - 8 x^2 + 17 x + 1 =(ax^2+bx+c)(x^2-2)+7x-7
This is because when (x^2-2)=0, the remainder was (7x-7). So r(x)=7x-7. We already know q(x) and we need to work out p(x).
2x^4-5x^3-8x^2+10x+8=(ax^2+bx+c)(x^2-2)
ax^4=2x^4rArra=2
bx^3=-5x^3rArrb=-5
-2c=8rArrc=-4
2x^4-5x^3-8x^2+10x+8=(2x^2-5x-4)(x^2-2)
2 x^4 - 5 x^3 - 8 x^2 + 17 x + 1=(2x^2-5x-4)(x^2-2) +7x-7
(2 x^4 - 5 x^3 - 8 x^2 + 17 x + 1 )/(x^2 - 2)= (2 x^2 - 5 x - 4) + (7 x - 7
)/(x^2-2)