How do you divide (3a^3+17a^2+12a-5)/(a+5)3a3+17a2+12a−5a+5?
1 Answer
Explanation:
First, let's split the top polynomial up into "multiples" of the bottom polynomial. To see what I mean, let's first try to take care of the
We can see that
3a^2(a+5) = 3a^3+15a^23a2(a+5)=3a3+15a2 . So, let's separate this from our polynomial:
3a^3 + 17a^2 + 12a - 53a3+17a2+12a−5
(3a^3+15a^2) + 2a^2+12a-5(3a3+15a2)+2a2+12a−5
3a^2(a+5) + 2a^2+12a-53a2(a+5)+2a2+12a−5
See how this "gets rid of" the
We can see that
2a(a+5) = 2a^2 + 10a2a(a+5)=2a2+10a .
3a^2(a+5) + (2a^2+10a) + 2a-53a2(a+5)+(2a2+10a)+2a−5
3a^2(a+5) + 2a(a+5)+ 2a-53a2(a+5)+2a(a+5)+2a−5
The next highest term to deal with is the
We can see that
2(a+5) = 2a+102(a+5)=2a+10 .
3a^2(a+5) + 2a(a+5)+ (2a+10) -153a2(a+5)+2a(a+5)+(2a+10)−15
3a^2(a+5) + 2a(a+5)+ 2(a+5) - 153a2(a+5)+2a(a+5)+2(a+5)−15
We can't do anything about the
Finally, let's divide everything by
(3a^3+17a^2+12a-5)/(a+5) 3a3+17a2+12a−5a+5
= (3a^2(a+5) + 2a(a+5)+ 2(a+5) - 15)/(a+5)=3a2(a+5)+2a(a+5)+2(a+5)−15a+5
= 3a^2+2a+2 - 15/(a+5)=3a2+2a+2−15a+5
Final Answer