How do you divide #( -3x^3+ 16x^2-24x+9 )/(x + 1 )#?

2 Answers
Nov 19, 2017

#-3x^3+16x^2-24x+9# is not divisible by #x+1#

Explanation:

If we descompose #-3x^3+16x^2-24x+9# we obtain:
#(x-3)(-3x^2+7x+3)# which is not divisible by #x+1#.

Nov 19, 2017

#-3x^2+19x-43+52/(x+1)#

Explanation:

#"one way is to use the divisor as a factor in the numerator"#

#"consider the numerator"#

#color(red)(-3x^2)(x+1)color(magenta)(+3x^2)+16x^2-24x+9#

#=color(red)(-3x^2)(x+1)color(red)(+19x)(x+1)color(magenta)(-19x)-24x+9#

#=color(red)(-3x^2)(x+1)color(red)(+19x)(x+1)color(red)(-43)(x+1)color(magenta)(+43)+9#

#=color(red)(-3x^2)(x+1)color(red)(+19x)(x+1)color(red)(-43)(x+1)+52#

#"quotient "=color(red)(-3x^2+19x-43)," remainder "=52#

#rArr(-3x^3+16x^2-24x+9)/(x+1)#

#=-3x^2+19x-43+52/(x+1)#