How do you divide #(3x^3 - 2x^2 - 12x - 2)/(x-7)#?
1 Answer
Jun 2, 2017
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(3x^2)(x-7)color(magenta)(+21x^2)-2x^2-12x-2#
#=color(red)(3x^2)(x-7)color(red)(+19x)(x-7)color(magenta)(+133x)-12x-2#
#=color(red)(3x^2)(x-7)color(red)(+19x)(x-7)color(red)(+121)(x-7)color(magenta)(+847)-2#
#=color(red)(3x^2)(x-7)color(red)(+19x)(x-7)color(red)(+121)(x-7)+845#
#"quotient "=color(red)(3x^2+19x+121),"remainder "=845#
#rArr(3x^3-2x^2-12x-2)/(x-7)=3x^2+19x+121+845/(x-7)#