We want to evaluate (3x^3-6x^2+13x-4)/(x-3)3x3−6x2+13x−4x−3
First let f(x)=3x^3-6x^2+13x-4f(x)=3x3−6x2+13x−4
Now, we'll take f(3)f(3) to see if (x-3)(x−3) is a factor of ff or not
f(3)=62f(3)=62
So (x-3)(x−3) isn't a factor.
But what can say is:
3x^3-6x^2+13x-4=(x-3)(ax^2+bx+c)+623x3−6x2+13x−4=(x−3)(ax2+bx+c)+62
3x^3-6x^2+13x-66=(x-3)(ax^2+bx+c)3x3−6x2+13x−66=(x−3)(ax2+bx+c)
therefore-3c=-66 rArrc=22
and ax^3=3x^3 rArr a =3
and -9x^2+bx^2=-6x^2 rArrb=3
therefore 3x^3-6x^2+13x-4=(x-3)(3x^2+3x-22)+62
Dividing everything by (x-3) gives us
(3x^3-6x^2+13x-4)/(x-3)=(3x^2+3x-22)+62/(x-3)