How do you divide #(-3x^3 - x^2 + 3x -18)/(2x+2)#?

1 Answer
Aug 2, 2018

#-3x^3-x^2+3x-18=(2x+2)(-3/2x^2+x+1/2)-19#

Explanation:

Let ,
#F(x)=(-3x^3-x^2+3x-18)/(2x+2)=(-3x^3-x^2+3x-18)/(2(x+1))#

We try to obtain factor #(x+1)# from the numerator-where it is

possible and left the free term , adjusting with #(-18).#
#"Numerator"=-3x^3color(red)(-x^2)+color(blue)(3x)color(brown)(-18#

#=-3x^3color(red)(-3x^2+2x^2)color(blue)(+2x+x)+color(brown)(1-19#
#=-3x^2(x+1)+2x(x+1)+1(x+1)color(brown)(-19#
#=(x+1)[-3x^2+2x+1]color(brown)(-19#

So,

#F(x)=((x+1)[-3x^2+2x+1]color(brown)(-19))/(2(x+1)#

#:. F(x)=(cancel((x+1))[-3x^2+2x+1])/(2cancel((x+1)))-color(brown)(19)/(2(x+1))#

#:.F(x)=(-3x^2+2x+1)/2-19/(2(x+1))#
Hence ,
#"quotient polynomial : "q(x)=-3/2x^2+x+1/2#

And remainder =-19

OR
#-3x^3-x^2+3x-18=(2x+2)(-3/2x^2+x+1/2)-19#