How do you divide (3x^4+2x^2+5x)/(6x^2+12x+4) 3x4+2x2+5x6x2+12x+4 using polynomial long division?

1 Answer
Oct 14, 2017

1/2x^2-x+2 -(15x+8)/(6x^2+12x+4)12x2x+215x+86x2+12x+4

Explanation:

As it works well on Socratic use a format which really is the same thing as :

6x^2+12x+4" "bar(| 3x^4+2x^2+5x)6x2+12x+4 ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯3x4+2x2+5x

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For formatting alignment I include place keepers. For example: 0x^30x3

color(white)("dddddddddddddddddddd")3x^4+0x^3+2x^2+5x+0dddddddddddddddddddd3x4+0x3+2x2+5x+0
color(magenta)(1/2x^2)(6x^2+12x+4) ->ul(color(white)("d")3x^4+6x^3+2x^2 larr" Subtract")
color(white)("dddddddddddddddddddddd")0 -6x^3+color(white)("d")0x^2+5x+0
color(magenta)(-x)(6x^2+12x+4)->color(white)("ddd.dd")ul( -6x^3-12x^2-4x larr" Sub."
color(white)("dddddddddddddddddddddddddd")0color(white)("d")+12x^2+9x+0
color(magenta)(2)(6x^2+12x+4)->color(white)("dddd")"Subtract"->ul( 12x^2+24x+8)
color(white)("ddddddddddddddddddd")color(magenta)("Remainder"->-0-15x-8 )

color(magenta)("1/2x^2-x+2 -(15x+8)/(6x^2+12x+4))